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Computing All Power Integral Bases 
of Cubic Fields 

By I. GaMl* and N. Schulte 

Abstract. Applying Baker's effective method and the reduction procedure of Baker 
and Davenport, we present several lists of solutions of index form equations in (totally 
real and complex) cubic algebraic number fields. These solutions yield all power integral 
bases of these fields. 

1. Introduction. Let K be a cubic algebraic number field and denote by ZK 
the ring of integers of K. A power integral basis of K is an integral basis of the 
form {1, &, &2} with some a E ZK. If there exists such an a, then we say that K is 
monogenic, since ZK = Z[&e]. Obviously, if a has this property, then it holds also 
for a + k with any k E Z. 

From a practical point of view, it is important to know whether there exists a 
power integral basis of K, and if so, what are the numerical values of a. 

If the Galois group of K is cyclic, then the discriminant of K is a full square. The 
problem of monogeneity in cyclic cubic fields was considered by M. N. Gras [12], 
[13], Archinard [1] and Dummit and Kisilevsky [4]. M. N. Gras and Archinard gave 
necessary and sufficient conditions for monogeneity and tested for several numerical 
examples whether or not the field is monogenic. Moreover, Dummit and Kisilevsky 
proved that there exist infinitely many cyclic cubic fields with power integral bases. 

For arbitrary algebraic number fields L, it was proved by Gyory [14] that up to 
obvious translations by elements of Z, there are only finitely many a E ZL with 
ZL = Z[&], and he gave effective (but rather large) bounds for the sizes of these a. 

In this paper we present a method which allows us to determine all possible values 
of a (up to translation with rational integers) such that {1, &, &2} is a power integral 
basis of a given cubic number field K. Let {w, = 1, w2, w3} be an integral basis of 
K. Denote by p(i) (i = 1, 2,3) the conjugates of any / E K. The discriminant of 
the linear form w2X + w3Y can be written as 

DK/Q (W2X + W3Y) = 1 ((wy - w(')X + (w3 w 3 
1<<ij<3 

= (I(X, Y))2D, 
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where D is the discriminant of the field K and I(X, Y) is a homogeneous cubic 
polynomial with rational integral coefficients, which is called the index form with re- 
spect to the basis {w, = 1, W2, W3} of K. The equation above yields that {1, a,a 2} 

(a = xw2 + yw3) is an integral basis of the field K if and only if DKIQ(a) = D, 
that is, if (x, y) is a solution of the index form equation 

(1) I(x, y) = +1 (x, y e Z). 

In the special case of cubic number fields, the index form equation (1) is just a cubic 
Thue equation. Using Baker's method, effective bounds for the solutions of index 
form equations (corresponding to arbitrary algebraic number fields) were obtained 
by Gyory [14]. His result was later improved and generalized by Gyory and Papp 
[17], Trelina [25] and Gyory [15], [16]. These bounds imply, in principle, that the 
solutions can be determined, but the bounds are too high for practical applications. 
On the other hand, an idea of Baker and Davenport [2] makes it possible to reduce 
the large upper bounds. Applying this method, Ellison [7], Ellison et al. [8], Steiner 
[24] and Petho and Schulenberg [23] solved completely certain Thue equations of 
degree three and four. Moreover, Petho [21] worked out a fast method to find 
"small" solutions of Thue equations. 

2. Brief Sketch of the Algorithm. Besides new ideas, our method also in- 
volves some standard arguments (used by the authors quoted above). We therefore 
do not go into details describing those algorithms; we shall only recall the main 
steps of our algorithm, point out the differences between the real and complex 
cases and stress the new features in comparison with equations solved by other 
authors. 

Let the index form equation (1) (corresponding to the integral basis {1, w2, w3}) 
of the cubic field K be 

(2) I(x, y) = I3x3 + I2x2y + Ilxy2 + Ioy3 = +1 (x,y E Z). 

Denote by r a root of I(x, 1) = 0. We remark that r can be chosen to generate (the 
same field) K over Q. Let x, y E Z be an arbitrary but fixed solution of (2) and 
put / = I3(x - ry). / is an integer of K, and (2) can be written as 

,3(1) p(2) -(3) = ?132. 

In the real case, denote by rql, ri2 (resp. by ql in the complex case) the fundamental 
units of K with norm +1. Then we set 

(3) ~3 = -n bi y1nb2 (resp.=Y )b 

where b1, b2 E Z (resp. b1 E Z) and -y is an integral element in K with norm ?I3 . 
If I131 :$ 1, then in the sequel we consider separately each element of a full set of 
nonassociate elements -y of norm I32. Such a set can be determined, e.g., by the 
method of Fincke and Pohst [10]. We remark that this is the first time that Thue 
equations with I131 :$ 1 are solved completely. 

Denote by k the index with 1,(k) I = min l:(i) I (the minimum is taken for i = 

1, 2, 3) and let {i, j} = {1, 2, 3}\{k}. In the real case, we have to consider k = 1, 2, 3 
separately, but in the complex case, the only interesting case is when 1(k) is the 
real conjugate of r (cf. [21]). 
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Applying Siegel's identity and some standard estimates, in the real case we obtain 
that, if B = max(I bi, Ib21) is large enough, 

(4) lb, log 1,It + b2 log 1621-log 16311 < exp(cl - C2B). 

In the complex case, if lb, I is not too small, then the corresponding inequality is 

(5) lb, log(S1) + b2 log(-l) -log(62)1 < exp(cl -C2B), 

where log denotes the principal value, b2 E Z with jb2 l < 2jb I and B = 

max( lbi l, Ib2 1). In both eases, Si, 62, 63 are algebraic numbers in the Galois closure of 
K depending on -y, the fundamental unit(s), r, and the indices k, i, j. Furthermore, 
Cl, C2 ... denote explicitly given positive constants. 

Applying Baker's method and the better estimates of Waldschmidt [26] (for the 
sake of getting sharp constants), in both cases the respective linear forms can be 
estimated from below by a constant of the form 

exp(-C3 (log B + C4)). 

Comparing the lower and upper estimates obtained for the linear forrns (4), (5), we 
get an upper bound BU for B, which is about 1027, 1028 in the cases we computed. 

Dividing (4) and (5) by the coefficient of b2 (in both cases), we obtain 

(6) IbiO + b2 -I < C5C B, 

where 0, ( are the quotients of two logarithms. This is the inequality to which the 
Baker-Davenport reduction method can be applied. For our case, a suitable version 
of the lemma is formulated in [11]. The essence of it is that, if we can find a good 
approximation of 0, which does not approximate well (, then (6) has no solutions 
b1, b2 with 

c7 + log B < B < Bu 
C8 

where C7, C8 have moderate values. Thus, we can reduce Bu almost to its logarithm, 
and we get a much better upper bound for B. Repeating the reduction step three 
or four times (until the new bound is still less than the original one), we get quite 
a low bound for B, which, in our computation, was usually < 12. We remark that 
in the first reduction step it is necessary to use multiple precision arithmetic and 
to calculate the numerical values for 0 and ( with an accuracy of about 100 digits. 

Using the reduced bound for B, from (3) it is easy to derive a bound yo for lyl, 
and the procedure is completed by applying a fast algorithm of Petho [21] which 
helps to find all solutions of (1) with jyj < yo. 

3. Computational Results. Using the above method, we solved index form 
equations (1) corresponding to cubic number fields with discriminants -300 < D < 
3137. 

From a computational point of view, the totally real case is more interesting 
than the complex case. This is why we included more examples with positive 
discriminants. Further, let us remark that in the complex case, much more is 
known about the number of solutions of (1) than in the real case. To formulate 
the corresponding theorem, recall that two cubic forms fi, f2 E Z[X, Y] are called 
equivalent if there exist integers a1, a2, a3, a4 with a1a4 - a2a3 = ?1 such that 
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f2(X, Y) = fi (a,X + a2Y, a3X + a4Y). A form f(X, Y) = aX3 + bX2Y + cXY2 + 
dY3 is reversible if a = d = 1 (cf. [6]). 

Denote by N the number of solutions of 

(7) f(x,y)=l inx,yEZ 

with the above f. Our equation (1) is precisely of the type (7), hence it is interesting 
to compare our results with those previously known about N. In the complex case, 
Delone [5] and Nagell [20] proved that N < 5, and that 

N( 

if f is not equivalent J 
to a reversible form 1 

1.2 if f is equivalent to 
3 a reversible form 
4 if D=-44 and -31 
5 if D =-23, 

and there exist infinitely many inequivalent forms with N = 3. 
The corresponding assertion in the real case has not yet been verified, but our 

results make probable a conjecture of Petho [22], namely that N < 9 and that 

N= 
(0 

if f is not equivalent 1 
to a reversible form 2 

3 if f is equivalent to 
4 a reversible form 
5 
6 if D = 81,229,257,361 
7 none 
8 none 
9 if D =49. 

We remark that the numerical data of all power integral bases may have several 
applications, apart from using them in calculations in these fields. For example, 
Kovacs [18] proved that the so-called canonical number systems of number fields 
(cf. [18]) are closely connected with power integral bases. Our data were used by 
Kovaics and Petho [19] to compute all canonical number systems in certain cubic 
number fields. Further, our table makes it possible to find several exceptional units 
in modules {1, a} (a E ZK) of cubic number fields. 

The numerical results are listed in the table below. For every example, the table 
contains the following data: 

D (a2,al,ao) (I31I2,IIJo) (xl,yl),(X2,y2),.*., 

where D is the discrinainant of the field K, f(x) = x3 + a2x2 + alx + aO is the 
defining polynomial of the generator element -y of K over Q. The index form is 

I(X, Y) = 13X3 + 12X2Y + 11XY2 + I0Y3, 

and the solutions of (1) are (xi, y'), (X2, Y2),.... Obviously, if (x, y) is a solution 
of (1), then so is (-x, -y), but we include only one of them in the table. If the 
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given integral basis (corresponding to the index form) is different from { 1, -y, 92}, 
and it has the form {1,w2,w3} with 

W2 = (Po + PI-Y + P2_2)/P, w3 = (qo + ql) + q2'12)/ql 

then we also add the data 

w2 = (Po,P1,P2)/P, w3 = (qo,ql,q2)/q. 

The input parameters (discriminant, defining polynomial of the generator ele- 
ment, integral basis, fundamental units) were taken in the real case from Ennola 
and Turunen [9], and in the complex case from Buchmann [3]. 

The computer program was developed in Fortran and was executed on the 
Siemens 7570P computer of the University of Dusseldorf. The execution time was 
about 60 seconds for every example. 

TABLE 
Real cubic fields 

D f(x) I(X, Y) solutions 
49 (-l, -2,1) (1 ,-,-) (-2,1), (-9,4), (-1,1), (-1, -1), (-1, 2), 

(-5,9), (0,1), (4,5), (1,0) 
81 (0, -3,1) (l1,0,-3,l) (2,1), (1,1), (3,2), (0,1), (1, 3), (1, 0) 

148 (-l, -3,1) (1,2, -2, -2) (1, 1), (1,I - 1), (- 5, 2), (- 31, 45), (1, 0) 
169 (-1, -4,_-1) (1,2, -3, _5) (-2,l),(-l,l), (l,0) 
229 (0,-4,1) (1,0,-4,1) (-2,1),(-2,-1),(508,273),(0,1),(1,4), 

(1,0) 
257 (-1, -4,3) (1, 2, -3, -1) (1, 1), (6,5), (-3, 1), (0, 1), (-2,7), (1,0) 
316 (-1,-4,2) (1,2, -3, -2) (-1,2),(1,0) 
321 (-1, -4,1) (1,2, -3, -3) (1,-1), (1,0) 
361 (-1,-6,7) (1,2,-5,1) (-7,2), (1,1), (9, 7), (0,1), (2,9), (1,0) 
404 (-1,-5,3-) (1,2,-4,-6) (1,-1),(1)(1,0) 
469 (-1,--5,4) (1,2,-4,-l) (0,1), (1,0) 
473 (0,-5,1) (1,0,-5,1) (-2, -1), (-27,13), (0,1), (1,5), (1,0) 
564 (-l,-5,3) (1,2,-4,-2) (3,2), (-3,1), (-3,7), (1,0) 
568 (-1,-6,-2) (1,2,-5,-8) (17,8),0(1,0) 
621 (0, -6,3) (1,0,-6,3) (8,3), (2,1), (1,2), (1,0) 
697 (0-, -,5) (1,2, -7,5) (3, 1), (2, 1), (13, 6), (1,1), (1,0) 
733 (-1,-7,8) (1,2,-6,1) (3,2),(0,l),(l,0) 
756 (0, -6,2) (1,0, -6,2) (1,3), (1,6) 
761 (-1, -6, -1) (1,2, -5, 27) (2,1), (-3,1), (-1,1), (1,0) 
785 (-0, -6,5) (1,2, -5, -1) (0,1), (1,0) 
688 (-1,-7,-3) (1,2,-6,-10) (-3,l),o(-3,2),(,0) 

837 (0, -6,1) (1,2, -6,1) (0,1), (1,6),(1,0) 
892 (-1, -8,10) (1,2, -7,2) (1,0) 
940 (0,-7,4) (1,0,-7,4) ( 1)1,0) 
961 (-1,-10,8) (2,5,-1,-2) no solutions 

w2 = (0,71,0)/ w3 = (0,1, 1)/2 
985 (-1, -6,1) (1,2, -5, -5) (, 1), (2,1), (-3,1), (1,0 ) 
993 (-1,-6,3) (1,2,-5,13) (-1,2), (1,0) 

1016 (-1, -6,2) (1,2, -5' -4) (1,0) 
1076 (0, -8,6) (l,0, -8,6) (7,3), (1,1), (1,0) 
1101 (-l, -9,12) (1,2, -8,3) (1, 0) 
1129 (0, -7,3) (l,0, -7' 3) (1,0) 
1229 (-1, -7,6) (1,2, -6, -1) (7,4), (0,1), (1,0) 
1257 (-1, -8,9) (1,2, -7,1) (0, 1), (1, 0) 
1300 (0, -1o,1o) (1,0, -10,10) (1,1), (1,0) 
1345 (0, -7,1) (1,0, -7,1) (-19,7), (18,7), (0,1), (1, 7), (1,0) 
136 non, 

. 
1.2 \, .11 (1. 2, - 1 , -23 (3 - 

, (-,) (1 
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TABLE (continued) 

D f(x) I(X, Y) solutions 
1373 (0,-8,5) (1,0,-8,5) (2,3),(1,0) 
1384 (-1,-10,14) (1,2,-9,4) (25,14),(1,2),(1,0) 
1396 (-1,-7,5) (1,2,-6,-2) (1,0) 
1425 (-l, -8, -3) (1,2, -7, -11) (3, -1), (1,0) 
1436 (0, -11,12) (1,0,-11,12) (5,2),(1,0) 
1489 (-1, -10, -7) (1,2, -9, -17) (2, -1), (3,1), (3, -1), (-22,7), (1,0) 
1492 (-1, -9, -5) (1,2, -8, -14) (3, -1), (1,0) 
1509 (-1, -7,4) (1,2, -6, -3) (2,1), (1,0) 
1524 (-1, -7,1) (1,2, -6, -6) (-1,1), (1,0) 
1556 (-1, -9,i1) (1,2, -8,2) (1,0) 
1573 (-1, -7,2) (1,2, -6, -5) (2,1), (-13,18), (1,0) 
1593 (0, -9,7) (1,0, -9,7) (-10,3), (5,2), (1,1), (1,0) 
1620 (0, -12,14) (1,0, -12,14) (1,0) 
1708 (-1, -8, -2) (1,2, -7, -10) (1,0) 
1765 (-1, -11,16) (1,2, -10,5) (2,1), (1,0) 
1772 (-1, -12,8) (2,5, -2, -3) (-8,3), (-2,3) 

w2 = (0,1,0)/i w3 = (0,1,1)/2 
1825 (-1, -8,7) (1,2, -7, -1) (2,1), (0,1), (1,0) 
1849 (-1, -14, -8) (2,5, -3, -8) no solutions 

w2 = (0,1,0)/i w3 = (0,1,1)/2 
1901 (-1, -9, -4) (1,2, -8, -13) (-42, 13), (-3,2), (1,0) 
1929 (-1, -10,13) (1,2, -9,3) (2,1), (1,0) 
1937 (-1, -8, -1) (1,2, -7, -9) (-1,1), (1,0) 
1940 (0, -8,2) (1,0, -8,2) (-3,1), (1,4), (1,0) 
1944 (0, -9,6) (1,0, -9,6) (1,0) 
1957 (-1, -9,10o) (1,2, -8,1) (4, 1), (2, 1), (0, 1), (1, 0) 
2021 (0, -8,1) (1,0, -8,1) (-26,9), (0,1), (1,8), (1,0) 
2024 (-1, -10, -6) (1,2, -9, -16) (1,0) 
2057 (0, -11, 11) (1,0o, - 11, 11) (1, 1), (1, 0) 
2089 (0,-13,4) (2,3, -5, -2) no solutions 

w2 = (0,1,0)/i w3 = (0,1,1)/2 
2101 (-1, -11, -8) (1,2, -lo, -19) (-2,1), (1,0) 
2177 (-1, -8,5) (1,2, -7, -3) (2,1), (1,0) 
2213 (-1, -13, -12) (1,2, -12, -25) (-2,1), (1,0) 
2233 (-1, -8,1) (1,2, -7, -7) (-1,1), (1,0) 
2241 (0, -9,5) (1,0, -9,5) (8,3), (1,0) 
2296 (-1, -14, -14) (1,2, -13, -28) (-9,4), (1,0) 
2300 (-1, -8,2) (1,2, -7, -6) (-7,2), (1,0) 
2349 (0, -12,13) (1,0, -12,13) (8,3), (1,0) 
2505 (-1, -10, -5) (1,2, -9, -15) (1,0) 
2557 (-1, -9, -2) (1,2, -8, -11) (1,0) 
2589 (-1, -14,12) (2,5, -3, -3) (1,1) 

w2 = (0,1,0)/i w3 = (0,1,1)/2 
2597 (-1, -9,8) (1,2, -8, -1) (2,1), (-4,1), (0,1), (1,0) 
2636 (0, -14,4) (2,0, -7,1) (-2,1), (0,1) 

w2 = (0,1,0)/i w3 = (0,0,1)/2 
2673 (0, -9,3) (1,0, -9,3) (1,3), (1,0) 
2677 (0, -10,7) (1,0, -10,7) (1,0) 
2700 (0, -15,20) (1,0, -15,20) (1,0) 
2708 (-1, -11, -7) (1,2, -10, -18) (1,0) 
2713 (0, -13,15) (1,0, -13,15) (-49,12), (4,3), (1,0) 
2777 (-1, -14,23) (1,2, -13,9) (-5,1), (2,1), (17,8), (1,1), (1,0) 
2804 (-1, -9, -1) (1,2, -8, -10) (- 1, 1), (1, 0) 
2808 (0, -9,2) (1,0, -9,2) (1,0) 
2836 (-1, -9,7) (1,2, -8, -2) (1,0) 
2857 (-1, -10,11) (1,2, -9,1) (-21,5),(, (1,0), (0,1) 
2917 (-1, -13,20) (1,2, -12,7) (2,1), (1,0) 
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TABLE (continued) 
D f(x) I(X, Y) solutions 

2981 (-1, -11,14) (1,2, -10,3) (2,1), (1,0O) 
2993 (-l,-12,17) (1,2,-11,5) (2,1),(1,2),(1,O) 
3021 (-1,-9,6) (1,2,-8,-3) (1,0) 
3028 (0,-10,6) (1,0,-10,6) (1,0) 
3137 (0, -11,9) (1,0,l -11, 9) (-11,3), (1,1) 

Complex cubic fields 
D f(x) I(X, Y) solutions 
-23 (0, - 1, 1) (1,0o, - 1, 1) (1, 1), (0, 1), (1, 0), (1, 1), (4, - 3) 
-31 (0,1,1) (1,0,1,1) (-2,3), (0,1), (1, -1), (1, 0) 
-44 (1, -1,1) (1, -2,0,2) (-47,56), (1, -1), (1, 0), (1, 1) 
-59 (0,2,1) (1,0,2,1) (0,1), (1, -2), (1,0) 
-76 (0, -2,2) (1,0, -2,2) (-23,13), (1,O), (1,1) 
-83 (1,1,2) (1, -2,2,1) (0,1),(1,0) 
-87 (1, -2, -3) (1, -2, -1, -1) (01 -1), (1,0) 

-104 (0, -1,2) (1,0, -1,2) (-3,2),(1,0) 
-107 (1,3,2) (1, -2,4, -1) (0, -1), (1,0), (2,7) 
-108 (0,0,2) (1,0,0,2) (- 1,1), (1, 0) 
-116 (1,0,2) (1, -2,1,2) (1,0) 
-135 (0, -3,3) (1,0, _3,3) (-2,1), (1,0), (1,1) 
-139 (1,1, -2) (1, -2,2, _3) (1, O), (2,1) 
-140 (0,2,2) (1,0,2,2) (1,-1),(1,0) 
-152 (1, -2,2) (1, -2,-1,4) (1, 0) 
-172 (1, -1, -3) (1, -2,0, -2) (1, 0) 
-175 (1,2,3) (1, -2,3,1) (0, 1), (1,0) 
-199 (1, -4,3) (1, -2, -3,7) (1,0), (2,1) 
-200 (1,2,-2) (1, -2,3, -4) (1,0) 
-204 (1,1,3) (1, -2,2,2) (1,0) 
-211 (0, -2,3) (1,0,-2,3) (1,0), (2, -1) 
-212 (1,4,2) (1, -2,5, -2) (1,O), (1,2) 
-216 (0,3,2) (1,0,3,2) (1,0) 
-231 (1,0, -3) (1, -2,1, -3) (-2,-1), (1,O) 
-239 (0, -1,3) (1,0, -1,3) (-5,3), (1,0) 
-243 (0,0,3) (1,0,0,3) (1,0) 
-244 (1, -4, -6) (1, -2,-3, -2) (1, 0) 
-247 (0,1,3) (1,0,1,3) (-1,1),(1,0) 
-255 (1,0,3) (1, -2,1,3) (1, -1),(1,0) 
-268 (1, -3, -5) (1, -2,-2, -2) (1,0), (3,1) 
-283 (0,4,1) (1,0,4,1) (0,1), (1, -4), (1,O) 
-300 (1,-3,3) (1, -2,-2,6) (1, 0) 

After the complete list of cubic fields with discriminants -300 < D < 3137 we 
give some more examples which may be of interest. 

D f (x) I(X, Y) solutions 
22356 (0, -36,60) (2,0, -18,15) (1, 1) 

w2= (0,1,0)/1 w3= (0,0,1)/2 
22356 (0, -18,6) (1,0, -18,6) (1,3), (1,O) 
22356 (0, -36,78) (1,0, -36,78) (485,117), (1,0) 

677329 (1, -274,61) (11, -14, -19,11) no solutions 
w2 = (0,1,0)/1 w3 = (-1, -4,1)/11 
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